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Objective. To examine the determinants of postsurgery length of stay (LOS) and
inpatient mortality in the United States (California and Massachusetts) and Canada
(Manitoba and Quebec).
Data Sources/Study Setting. Patient discharge abstracts from the Agency for Health
Care Policy and Research Nationwide Inpatient Sample and from provincial health
ministries.
Study Design. Descriptive statistics by state or province, pooled competing risks
hazards models (which control for censoring of LOS and inpatient mortality data),
and instrumental variables (which control for confounding in observational data) were
used to analyze the effect ofwait time for hip fracture surgery on postsurgery outcomes.
Data Extractions. Data were extracted for patients admitted to an acute care hospital
with a primary diagnosis of hip fracture who received hip fracture surgery, were
admitted from home or the emergency room, were age 45 or older, stayed in the
hospital 365 days or less, and were not trauma patients.
Principal Findings. The descriptive data indicate that wait times for surgery are
longer in the two Canadian provinces than in the two U.S. states. Canadians also
have longer postsurgery LOS and higher inpatient mortality. Yet the competing risks
hazards model indicates that the effect of wait time on postsurgery LOS is small
in magnitude. Instrumental variables analysis reveals that wait time for surgery is
not a significant predictor of postsurgery length of stay. The hazards model reveals
significant differences in mortality across regions. However, both the regressions and
the instrumental variables indicate that these differences are not attributable to wait
time for surgery.
Conclusions. Statistical models that account for censoring and confounding yield
conclusions that differ from those implied by descriptive statistics in administrative
data. Longer wait time for hip fracture surgery does not explain the difference in
postsurgery outcomes across countries.

Key Words. Surgery delay, hip fracture, competing risks hazards, instrumental
variables
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Policymakers and researchers have long been debating the relative merits
of the U.S. and Canadian healthcare systems. Numerous comparisons of
the quality of healthcare services and health outcomes have been based
on administrative data that describe patient care in both of these countries.
However, the conclusions that can be drawn from such studies are limited by
the observational nature of the data. For instance, comparisons of inpatient
mortality are confounded by longer lengths of stay in Canada versus the
United States, which leads to unequal probabilities of observing in-hospital
death across countries. In addition, controls for inpatient case mix are limited
to information on the number and types of comorbidities listed in the medical
abstract. Thus, it is difficult to conclude whether differences in outcomes
between the United States and Canada are truly due to differences in health-
care systems or to undocumented differences in case mix between the two
countries.

This article proposes methods for comparing treatment effects in the
United States and Canada when analyzing inpatient administrative data
from these two countries. We specifically address the issues of right-censored
inpatient mortality data as well as that of incomplete information on patient
case mix. Although we seek to assess the effectiveness ofhealthcare in Canada
versus the United States, the methods are readily generalizable to other cases
in which one seeks to identify the determinants of inpatient mortality and
hospital length of stay.

Our case study is a comparison of surgical queues and outcomes be-
tween the United States and Canada after a patient has fractured his or her
hip. Critics of the Canadian healthcare system claim that universal health
insurance has led to unacceptable delays in obtaining healthcare in Canada.
Although the existence of queues has been widely documented (Globerman
1991; U.S. Government Accounting Office 1991; Katz, Mizgala, and Welch
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1991), there is little evidence that the queues observed in Canada detrimen-
tally affect clinical outcomes relative to those in the United States.

We focus on queues for hip fracture patients for three reasons. First, hip
fractures are common and are, in fact, the leading cause of hospitalization
for injuries among the elderly (Baker, O'Neill, and Karpf 1984). Second, hip
fracture is easy to diagnose, with little ambiguity about coding or the need for
hospitalization. Thus, patient populations presenting for hip fracture surgery
will be similar across sites (Roos et al. 1996). Third, there is a strong a priori
presumption that surgical queues for hip fracture will affect outcomes. Unlike
queuing for many other surgical procedures, treatment for hip fracture is
urgent. Patients who fracture their hips are immobile and must remain in the
hospital, in traction and on medication, until they receive surgery. Prolonged
immobility resulting from surgery delay can lead to complications that are
potentially fatal (Sabiston 1991). In fact, several studies in the orthopedic
literature find a detrimental effect of surgery delays on postsurgery outcomes
(Bredahl, Nyholm, Hindsholm, et al. 1992; Davis, Woolner, Frampton, et al.
1987; Hoerer, Volpin, and Stein 1993; Sexson and Lehner 1988). However,
these studies tend to have relatively small sample sizes, or they control for only
a limited number of covariates. Thus, hip fractures represent an important
case study for comparing queues and clinical outcomes between Canada and
the United States.

We analyzed data from administrative databases from California, Mas-
sachusetts, Quebec, and Manitoba to obtain information on large samples
of patients in both the United States and Canada. Competing risks hazards
regression models are used to analyze the effect of surgery wait times on post-
surgery length of stay and inpatient mortality. We introduce parameters in the
hazards model that account for unobserved differences in health status across
patients which are not captured in the administrative data. We then apply
instrumental variables analysis to examine the robustness of the conclusions
regarding surgery delays and postsurgery outcomes.

METHODS
Data Sources

Data for the United States are drawn from the Agency for Health Care Policy
and Research (AHCPR) Healthcare Cost and Utilization Project (HCUP-3)
Nationwide Inpatient Sample (NIS). The NIS is designed to approximate a
20 percent sample of U.S. community hospitals as defined by the American
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Hospital Association (AHA).1 For each general acute care hospital sampled
in California and Massachusetts, we have discharge abstract information on
100 percent ofpatients discharged during the relevant calendar year.2 Data for
Quebec are drawn from the Quebec Ministry of Health and Social Services
MED-ECHO database, which contains discharge abstracts for all inpatients
in acute care hospitals in the province. Information for Manitoba is drawn
from the Manitoba Health file, which also contains discharge abstracts for all
inpatients in acute care hospitals in the province.

Study Population
The study population consists of patients discharged between 1990 and 1992
in California (n = 20,025), Massachusetts (n = 11,692), and Quebec (n =
13,555), and between 1990 and 1994 in Manitoba (n = 4,257). All patients
admitted to acute care hospitals with a primary diagnosis of hip fracture
(International Classification of Diseases, 9th Revision [ICD-9-CM], diagnosis
codes 820.0-820.9) who were age 45 or older and whose length of stay
in the hospital was 365 days or less were initially included in the sample.
Patients who fractured their hip due to multiple trauma (e.g., motor vehicle
accident) are more likely to receive expedited surgery (i.e., hip fracture is
not the primary health problem). Because these cases are typically handled
in a special manner, we excluded them from the analysis. Thus, patients
documented as having had head trauma (ICD-9-CM codes 860-869) were
excluded. In addition, we chose to study patients admitted only from their
home or the emergency room, because total wait times for surgery for trans-
ferring patients were not available. The only exception to this exclusion was
Manitoba, where we had information on length of stay in the transferring
hospital. In this province, patients with a prior length of stay greater than
one day in a transferring hospital were excluded. These exclusions led to
patient sample sizes of 16,948 in California, 8,971 in Massachusetts, 10,006 in
Quebec, and 3,591 in Manitoba. In each state or province, over 90 percent of
patients admitted with a primary diagnosis of hip fracture eventually received
hip surgery (n = 15,711, 93 percent in California; n = 8,202, 91 percent in
Massachusetts; n = 10,013, 91 percent in Quebec; n = 3,364, 94 percent
in Manitoba). Only data on patients who receive surgery are used in the
following analysis.

Covariates
The two dependent variables are postsurgery length of stay and inpatient
mortality (whether the patient was discharged from the hospital alive or
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dead). The primary explanatory variable of interest is wait time until surgery.
This variable is constructed by calculating the amount of time that elapsed
between the date of admission to the hospital and the date of hip fracture
surgery, measured in days. Age, gender, state or province of residence, and
hip fracture type are also included as explanatory variables. These covariates
are represented categorically, with age dummy variables for those ages 65
to 79 versus younger patients and for those patients age 80 and over versus
younger patients. A dummy variable indicator distinguishes patients with a
pertrochanteric fracture from other hip fracture patients. Indicator variables
for the individual comorbidities used to construct the Charlson comorbidity
index are included as regressors to control for observable differences in health
status across patients (Romano, Roos, andJollis 1993). The Charlson index
derived from the weighted aggregation ofthese individual dummy variables is
also presented in the descriptive statistics and instrumental variables analysis.
Both the indicator variables and the Charlson index were constructed using a
coding methodology developed specifically for administrative data (Romano,
Roos, andJollis 1993). The number of hip fracture surgeries performed in the
patient's hospital during the year of admission is also included as a regressor.
This variable is included to test for the positive relationship between surgical
volume and more favorable postsurgical outcomes identified in previous
studies (Luft et al. 1990; Hannan, Kilburn, Bernard, et al. 1991; Hamilton
and Hamilton 1997).

Modeling Strategies
Multivariate regression analysis is required to assess the effect of wait time
for surgery on postsurgery length of stay and inpatient mortality, controlling
for variations in other factors that may also affect patient outcomes. The
regression is estimated on pooled data, so that we can also test for significant
differences in patient outcomes across the four regions.

The regression is specified using a survival analysis framework, because
the dependent variables are time until discharge for patients discharged alive,
and time until death for patients who die in the hospital (Kalbfleisch and
Prentice 1980). Note that these two dependent variables censor observable
data on each other. For example, if patients in the United States have shorter
postsurgery lengths of stay than Canadian patients, then one will also be less
likely to observe inpatient mortality among U.S. patients. We control for this
censoring by estimating a competing risks hazards model (Lancaster 1990;
Hamilton, Hamilton, and Mayo 1996; Hamilton and Hamilton 1997). This
model estimates the conditional (on time in the hospital) probability of live
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discharge and the conditional probability of a dead discharge, controlling
for right censoring of each variable by the other "competing" outcome.
These conditional probabilities are referred to as "transition intensities" in
the duration literature.

Although a number of covariates are included in the model to account
for differences in patient characteristics, unobservable differences among
patients that affect the probability of live discharge and inpatient mortality
may still remain. For example, the administrative data may lack sufficient
detail to identify frailer patients who are less likely to be discharged alive
and are more likely to die in the hospital as well (lezzoni, Foley, Daley,
et al. 1992). An approach used in the duration literature to account for
unobserved (in the data) patient heterogeneity is to specify the transition
intensities as dependent on a univariate random variable, as well as on
observable patient characteristics (Lancaster 1990; Pickles and Crouchley
1995; Hamilton, Hamilton, and Mayo 1996; Hamilton and Hamilton 1997).
We assume that this random variable takes on two discrete values to be
estimated in the data (Heckman and Singer 1984). Intuitively, this random
variable captures systematic differences in the error term of the regression
model that may remain after controlling for observable covariates. We allow
this random variable to enter the death and live-discharge equations with
different factor loadings so that the unobserved risk factors may affect the
two outcomes in different ways.

The resulting competing risks model with unobserved patient hetero-
geneity may be estimated using maximum likelihood techniques. The likeli-
hood function is estimated using a proportional hazards specification. That is,
observable covariates and unobserved patient heterogeneity shift the transi-
tion intensity above or below its baseline. The baseline hazard is assumed to
follow a log-logistic distribution (Hamilton and Hamilton 1997). A detailed
description of the likelihood function appears in the appendix.

Instrumental Variables Analysis

In order to examine the robustness of our results, we also analyze the effect of
wait time for surgery on postsurgery outcomes using instrumental variables
analysis. This approach has been applied previously to examine the effect
of intensive treatment of acute myocardial infarction when analyzing obser-
vational data (McClellan, McNeil, and Newhouse 1997). Observational data
are problematic when one analyzes the impact of a treatment on outcomes,
because differences in health status may determine which treatment patients
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receive. These variations in health status may also systematically affect out-
comes, making it difficult to distinguish variations in outcomes that are due to
treatment effects versus health status. Instrumental variables analysis attempts
to isolate the treatment effect in observational data and to circumvent the
potential confounding effect of health status.

This approach requires the identification of an "instrumental variable"
(IV)-a variable that is correlated with wait time for surgery, but a priori is not
believed to affect postsurgery outcomes directly. Patients are then grouped
by their reported value of this IV. If the IV is valid, then the correlation
between the IV and postsurgery outcomes reveals the relationship between
wait time for surgery and outcomes, purged of confounding factors such as
patient comorbidities. This correlation may differ both in magnitude and
significance relative to basic descriptive statistics on the relationship between
surgery delay and postsurgery outcomes.

In this case we test the hypothesis that the treatment effect-surgery
delay-has no significance for postsurgery outcomes. Thus, we must compare
differences in postsurgery outcomes across patients with different values ofthe
IV. If the patient groups differ significantly in wait times for surgery but their
postsurgery outcomes are not significantly different, then one may conclude
that wait time for surgery does not have a significant effect on postsurgery
outcomes.

We use day of the week of admission to the hospital as an instrument for
wait time for surgery. Surgical staff may prefer to operate on weekdays rather
than on weekends, which will systematically affect the distribution of wait
times across days of the week. However, day of the week of admission is less
likely to affect patient outcomes. We therefore test for significant differences
in the fraction of patients delayed for surgery using a one-way analysis of
variance test. For the IV analysis, patients hospitalized three or more days
prior to surgery were classified as having their operations delayed (Roos et al.
1996). We then test for significant differences in the fraction of patients who
died in the hospital and their mean postsurgery length of stay by day of the
week of admission using one-way analysis of variance tests.

One may be concerned that hospitals have lower levels of nursing
staff or other ancillary services on weekends, so that day of the week of
admission might also directly affect patient outcomes. However, we focus
on the "extreme" hypothesis that day of the week of admission has no effect
at all on patient outcomes. Thus, ifwe find that day of the week of admission
is correlated with wait time for surgery, but not with postsurgery outcomes,
then the IV is indeed valid.
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RESULTS

Descriptive Findings

Table 1 presents descriptive statistics on wait times for surgery and postsurgery
outcomes in each of the four regions being compared. Mean wait times
are longer in the two Canadian provinces (delay = 3.32 days in Manitoba
and 3.06 days in Quebec.) than in the two U.S. states (delay = 2.60 days
in Massachusetts and 2.17 days in California). Moreover, inpatient mor-
tality is over 5 percent in both Canadian provinces while it is under 5
percent in the United States; and postsurgery lengths of stay are close to
30 days in Manitoba and Quebec, and well under 20 days in the United
States.

Within each region, longer surgery delays also appear to be associated
with poorer postsurgery outcomes. For example, Manitoba patients who wait
six or more days for surgery are twice as likely to die in the hospital relative to
patients who undergo surgery within one day of admission. In addition, their
postsurgery lengths of stay are over 15 days longer. Thus, comparisons ofwait
times and postsurgery outcomes both across regions and within regions give
the impression that surgery delays harm patient outcomes.

However, in each region, hip fracture patients with longer surgery
delays also record higher values of the Charlson comorbidity index. In
each state or province the Charlson index is at least 30 percent higher for
patients who wait six or more days for surgery relative to patients operated
on within one day of admission. Thus, the poorer outcomes of patients who
were delayed for surgery may be due to poorer health status at the time of
admission to the hospital.

Note also that longer postsurgery lengths of stay in Canada imply that
one is more likely to observe inpatient mortality in Manitoba and Quebec
than in the U.S. states. This correlation between length of stay and inpatient
mortality can be controlled for in a competing risks hazards model.

Also, the mean value of the Charlson index is higher in Massachusetts
and California (.63 and .60, respectively) than in Manitoba and Quebec
(.48 and .55, respectively). Given that the age and sex distributions and the
percentage ofpertrochanteric fractures are similar across regions, little reason
exists for health status to differ. However, U.S. hospitals have an incentive to
code as many comorbidities as possible in order to increase reimbursement
under the Medicare DRG system; no such incentive exists in Canada. Thus,
observable data on comorbidity status may not fully account for differences
in health status that contribute to surgery delay.
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Table 1: Relationship Between Wait Time Until Surgery, Case Mix,
and Outcomes for Patients Undergoing Surgery
Surgery Charlson Inpatient

Delay Index Mortality. Postsurgery Length ofStayDelay Index MortalPty vM
(days) Percent (Mean) (%) Mean Median

Manitoba (N = 3,364)

2
3
4
5
6+

Total

13
41
25
9
4
8

100

Quebec (N = 10,013)
1 24
2 42
3
4
5
6+

Total

17
7
3
7

100

mean delay = 3.32 days
.31
.39
.54
.64
.70
.68

.48

mean delay = 3.06 days
.48
.52
.58
.57
.71
.80

.55

4.7 28.11
4.8 28.86
6.0 30.67
6.7 33.03
6.4 33.34
9.9 46.15

5.7 31.10

7.0 26.30
7.7 27.16
9.3 28.35
8.8 28.06

13.9 35.60
12.2 37.89

8.5 28.22

Massachusetts (N = 8,202)
1 18
2 52
3
4
5
6+

Total

16
5
3
6

100

mean delay = 2.60 day
.56
.60
.66
.76
.84
.74

.63

2.9 13.02
3.7 13.13
6.2 15.02
6.0 14.41
6.6 14.64
7.9 17.77

4.4 13.72

California (N= 15,711)
1 30
2 50
3 12
4
5
6+

Total

3
2
3

100

mean delay = 2.17 days
.54 2.3
.58 2.7
.67 3.2
.72 4.4
.75 6.0
.85 6.7

.60 2.9

16
16
17
19
23
26

17

16
18
19
19
21
23

18

10
10
10
11
11
12

10

8.37
8.47
8.92
9.23
8.64
9.79

8.57

8
8
8
8
8
8

8
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Competing Risks Model

Table 2 presents parameter estimates of the determinants of length of stay
that result in a live discharge or an in-hospital death. The coefficients are

presented in terms of hazard ratios (relative risks), so that a hazard ratio of
1.5, for example, implies that a one-unit increase in a variable leads to a 50
percent increase in the conditional probability of discharge on any given day.

The variables that capture differences in patient health status behave
as hypothesized. The hazard ratios (and 95 percent confidence intervals)

Table 2: Competing Risks Proportional Hazards Estimates for
Postsurgery Length of Stay

Discharge Status

Variable Alive Dead

Hazard Ratios
Age 65-69
Age 80+
Male
Pertrochanteric fracture
Myocardial infarction
Peripheral vascular disease
Dementia
Chronic pulmonary disease
Rheumatologic disease
Mild liver disease
Diabetes (mild to moderate)
Diabetes with chronic complications
Renal disease
Cancer
Moderate/Severe liver disease
Metastatic solid tumor
Volume
Delay
Massachusetts
Manitoba
Quebec

Constant

Parameter Estimates
p

Jr

0.725
0.607
0.923
0.850
1.033
0.824
0.985
0.866
0.992
0.544
0.920
0.755
0.524
0.727
0.549
0.678
1.002
0.974
0.405
0.151
0.148

(0.692, 0.758)
(0.579, 0.634)
(0.896, 0.950)
(0.829, 0.872)
(0.946, 1.119)
(0.766, 0.881)
(0.944, 1.026)
(0.834, 0.898)
(0.893, 1.091)
(0.450, 0.638)
(0.876, 0.963)
(0.691, 0.819)
(0.461, 0.587)
(0.671, 0.783)
(0.352, 0.747)
(0.600, 0.757)
(1.002, 1.002)
(0.970, 0.977)
(0.391, 0.418)
(0.143, 0.158)
(0.142, 0.155)

2.930
6.721
1.943
1.286
1.595
1.424
0.915
1.895
1.568
3.453
1.243
1.421
3.210
1.566
2.697
3.013
0.999
1.011
0.850
0.845
1.432

(1.926,
(4.435,
(1.702,
(1.140,
(1.064,
(1.107,
(0.750,
(1.616,
(0.777,
(1.672,
(1.001,
(0.885,
(2.322,
(1.160,
(0.010,
(1.987,
(0.997,
(1.006,
(0.715,
(0.669,
(1.207,

3.934)
9.006)
2.184)
1.432)
2.126)
1.741)
1.081)
2.174)
2.360)
5.235)
1.484)
1.956)
4.099)
1.971)
5.384)
4.039)
1.000)
1.017)
0.985)
1.021)
1.657)

0.045 (0.023, 0.068)

0.0001 (0.0001, 0.0001)
4.044 (3.980, 4.108)
1

0.014 (0.011, 0.016)
1.452 (1.329, 1.576)

-2.129 (-2.729, -1.528)

Note: 95% confidence intervals are in parentheses. Estimated coefficients for the remaining
parameters capturing unobserved heterogeneity are listed in the appendix. N = 37,290. Log-
likelihood = -127,384.
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presented under the column labeled Alive show that, relative to patients ages
45-64, patients ages 65-69 who are discharged alive are only .73 times as
likely to be discharged on any given day; thus 65-69 year old patients have
longer postsurgery lengths of stay than younger patients. The hazard ratios
presented in the column labeled Dead indicate that this relationship between
age and length of stay is attenuated by the fact that older patients are more
likely to die on any given day in the hospital than are younger patients.
Presence of comorbidities tends to reduce the conditional probability of a
live discharge on any given day and to increase the conditional probability of
inpatient death. For example, for a hip fracture patient the presence of chronic
pulmonary disease decreases the relative probability of live discharge by a
factor of .87 on any given day, and it increases the relative probability of
in-hospital death on any given day by 1.90.

After controlling for differences in patient health status, delay still ap-
pears to affect postsurgery length of stay for patients discharged alive. For
these individuals, the relative probability of discharge is reduced by .97 for
each additional day spent waiting for surgery. The relative probability ofbeing
discharged dead appears to increase slightly as wait time increases. However,
the estimate of the hazard ratio (1.01) is small in magnitude. Thus, longer
wait times for surgery contribute to longer postsurgery length of stay but they
have little effect on in-hospital death.

Most noticeable are the substantial differences across provinces and
states in postsurgery length of stay and inpatient mortality that persist after
controlling for covariates. Using California as the base case, the relative
probability of live discharge is .41 in Massachusetts, .15 in Manitoba, and
.15 in Quebec. Thus, Massachusetts patients who are discharged alive have
much longer postsurgery lengths of stay relative to comparable patients in
California. Yet the postsurgery length of stay for Canadian patients discharged
alive is even longer.

We also find that Quebec patients face a higher relative probability of in-
hospital death (1.43) compared to California patients. In contrast, the relative
probability of death in the hospital is lower for Massachusetts patients (0.85).
The relative probability of in-hospital death is not significantly different for
Manitoba versus California patients.

Past researchers hypothesized that practice-makes-perfect effects ac-
count for a significant proportion ofthe variation in outcomes across hospitals.
Given that Canadian hospitals are on average substantially smaller than U.S.
hospitals,3 surgery volume was included as a regressor. However, the relative
probability of discharge dead did not differ significantly by hospital volume,
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and the effect of volume on live discharge is positive but very small (1.002)
in magnitude.

Finally, we find it important to allow for patient characteristics that
are potentially unobservable in the administrative data (e.g., patient frailty)
and that may affect both live discharge and death in-hospital. In particular,
the estimated coefficient on the unobserved heterogeneity random variable
has a value of -2.13 (95% CI: -2.729, -1.528), which implies that the two
outcomes are significantly negatively correlated. That is, after controlling for
observable covariates, individuals who tend to have a higher probability of
live discharge, conditional on length of time in hospital, also have lower
hazards of in-hospital death.

Instrumental Variables Analysis
Table 3 presents information on patient characteristics and outcomes by day
of the week for each region. Column 2 lists the percentage of all patients
admitted on each day of the week. Note that admission ofhip fracture patients
is fairly even across days of the week: between 13 and 15 percent per day in
each region. Column 3 lists the percentage of patients admitted on each day
of the week who faced a surgery delay of three or more days. For example,
the first row of column 3 indicates that 52 percent of hip fracture patients
admitted on a Monday in Manitoba waited three or more days for hip fracture
surgery. Note that there is wider variation by day of the week in column 3
versus column 2. The p-values in column 3 indicate that in all regions except
for California, average wait times differ significantly by day of the week. In
California, wait times are on average substantially shorter. Therefore, in that
state we also examined the proportion of patients who waited two or more
days for hip surgery and found that the fraction of patients delayed two or
more days differed significantly by day of the week (p = .044).

We had hypothesized that day of the week of admission would serve as
a useful IV in an analysis of surgery delays, because surgical staff may prefer
to operate on weekdays rather than on weekends. The figures in column 3
indicate in some instances that delays are less frequent near the end of the
normal work week relative to the weekend. However, the evidence is not
overwhelming. Yet weak evidence for this hypothesis does not undermine
the validity of day of the week of admission as an IV. As long as wait times for
surgery are statistically significantly different by day of the week of admission,
then the IV can be used to assess the effect of wait times on patient outcomes.

Column 4 indicates that average values of the Charlson index do not
vary by day of the week of admission. Thus, although delay varies by day of
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Table 3: Relationship Between Admitting Day, Wait Time, Case
Mix, and Outcomes for Patients Undergoing Surgery

Postsurgery
Percent Charlson Inpatient Length

Admitting Delayed Index Mortality ofStay
Day Percent 3+ Days (Mean) (96) (Mean)

Manitoba (N = 3,364)
Monday 15 52 .52 6.3 33.3
Tuesday 15 49 .45 6.1 29.0

Wednesday 15 52 .50 4.8 32.4
Thursday 15 45 .42 4.7 30.6
Friday 14 43 .50 6.5 29.3

Saturday 13 37 .47 6.8 29.4
Sunday 13 45 .48 5.0 33.9

p-value - <.0001 .665 .647 .377

Quebec (N = 10,013)
Monday 14 38 .56 7.4 28.4
Tuesday 14 36 .58 8.9 27.7

Wednesday 15 37 .60 9.0 27.6
Thursday 15 27 .52 9.1 28.6
Friday 15 30 .50 7.7 28.9

Saturday 13 34 .51 8.6 27.8
Sunday 13 34 .57 8.6 28.6

p-value - <.0001 .091 .561 .912

Massachusetts (N = 8,202)
Monday 15 32 .67 2.9 14.57
Tuesday 15 31 .68 5.0 14.01

Wednesday 14 27 .64 4.7 13.93
Thursday 14 25 .60 4.8 13.18
Friday 15 32 .58 4.2 13.52

Saturday 14 34 .58 4.5 13.84
Sunday 13 31 .62 4.5 13.42

p-value - <.0001 .123 .188 .489

California (N= 15,711)
Monday 15 21 .60 3.2 8.64
Tuesday 15 21 .61 3.0 8.76

Wednesday 14 20 .61 3.2 8.59
Thursday 14 19 .60 3.2 8.62
Friday 15 20 .60 2.8 8.38

Saturday 14 20 .57 2.0 8.43
Sunday 13 21 .58 2.6 8.54

p-value - .577 .809 .112 .182
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the week of admission, these variations are not attributable to differences in
health status. We can therefore use differences in postsurgery outcomes by
day of the week as a measure of the effect of delay on outcomes that is not
confounded by health status.

Columns 5 and 6 present postsurgery outcomes by day of the week
of each region. In each region, the hypothesis tests reveal that neither post-
surgery length of stay nor inpatient mortality differs significantly by day of
the week of admission. Thus, instrumental variables analysis indicates that
wait time for surgery does not lead to detrimental postsurgery outcomes.

Ifwe had instead found that patient outcomes varied significantly by day
of the week, the finding could have occurred for two reasons. First, significant
variations in outcomes could have been due to tangible effects of delay on
postsurgery outcomes. Second, such a finding could have occurred if hospital
quality did truly differ by day of the week, for example, lower staffing on
weekends. However, we found that in-hospital death and postsurgery length
of stay did not vary by day of the week of admission. Therefore, it appears
that hospital quality is not directly affected by day of the week of admission,
and that day of the week can serve as a valid instrument for delay that does
not directly affect patient outcomes.

DISCUSSION

Descriptive statistics drawn from both U.S. and Canadian data imply a
causal relation between delay for surgery and postsurgery outcomes for hip
fracture patients. However, more careful multivariate analysis that controls
for censoring reveals that surgery delay has a relatively small effect on
postsurgery length of stay and that it has little bearing on inpatient mortality.

Differences in 30-day mortality between Manitoba and Massachusetts
have been identified in previous research that found that surgery delay did
not explain this variation (Roos et al. 1996). We expand on this analysis,
using competing risks hazards models to control for censoring, so that the
determinants of postsurgery length of stay and inpatient mortality can also be
analyzed. These variables are of interest because they specifically reflect the
consequences of care provided within the hospital, whereas comparisons of
care based on 30-day mortality may be confounded by care provided after
hospital discharge. In addition, analyses of length of stay are important given
the potential cost consequences of longer acute care hospital stays.

Our analysis reveals that postsurgery length of stay is significantly
longer in the two Canadian provinces versus the two U.S. states but that
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it is also longer in Massachusetts than in California. In addition, inpatient
mortality is significantly higher in Quebec versus the U.S. states; yet Mas-
sachusetts inpatient mortality is slightly lower than that in California. Thus,
unexplained differences in outcomes within countries also exist and require
further investigation.

The fact that delays and outcomes differ between Canada and the
United States may be a function of their different reimbursement systems
for healthcare services. Hospitals in the United States are reimbursed a fixed
price for each admission based on theDRG system, which encourages prompt
discharge. In fact, past research has noted a 42 percent decline in length of stay
for patients treated in a large U.S. community hospital after the introduction
ofDRG reimbursement in the 1980s (Fitzgerald, Moore, and Dittus 1988). In
contrast, Canadian hospitals receive a global budget each year, which is not
directly related to patient length of stay. Examination of the impact of price
incentives on the provision of healthcare warrants further attention.

The competing risks hazards model is readily generalizable to other
cases in which a researcher seeks to analyze the determinants of patient
outcomes, but it faces the problems of censoring and limited case-mix infor-
mation found in administrative data. For example, these methods can also be
used to compare treatment effects across different regions within the United
States, to perform a before-and-after analysis of a particular intervention, or
to determine the effect of a continuous variable such as surgical volume on
patient outcomes (Hamilton and Hamilton 1997).

We have also demonstrated how we can check the robustness of our
conclusions using instrumental variables analysis. Note that in this case, the
IV approach provides less detailed information than the competing risks
multivariate hazard model. The IV analysis provides a yes/no answer to the
question: Does a wait time for surgery of three or more days significantly
affect postsurgery outcomes?" In contrast, the multivariate hazards model
yields quantitative estimates of the effects of delay and other covariates on
patient outcomes. However, the advantage of the IV approach we use is that
it is computationally much simpler than the competing risks hazards model.
Thus, the IV analysis can be readily applied before more sophisticated models
are attempted.

The application of IV analysis requires the presence of an appropriate
instrument. Day ofthe week ofadmission is not readily generalizable as a valid
IV in all examples. However, distance from a "high-tech" hospital has also
proved to be a useful IV when the health benefits of more advanced medical
technologies have been assessed (McClellan, McNeil, and Newhouse 1997).
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Whether one is able to use IV analysis depends on the research question
being posed and the data that are available.

The limitations of this study should be noted. We excluded from the
analysis patients who were admitted from long-term care facilities. These
patients were likely to be more frail than the general hip fracture population
and therefore would have more clinical justification for surgery delays not
documented in the medical record. Although our proposed methodology
aims to account for unobservable differences in patient frailty, it seems rea-
sonable to exclude a subpopulation for whom longer wait times for surgery
may be clinically justified.4

The measure of delay in this study is the wait time between admission
and hip fracture surgery, measured in days. Thus, no explicit distinction was
made between medically necessary delays that may be required to stabi-
lize patients with certain comorbidities (Kenzora et al. 1984) and medically
unnecessary delays. We chose this approach for two reasons. First, given the
associated pain and suffering involved, it would have been difficult to conduct
a randomized controlled trial that purposely delayed patients. In addition, a
more specific clinical measure of delay would have been difficult to apply
because one cannot definitively state ex ante which comorbidities constitute
a medically necessary delay. Therefore, this article takes a more general
approach and controls for all differences in health status (observable and un-
observable) that may be correlated with wait time and postsurgery outcomes.

Our approach for modeling potentially correlated competing risks as-
sumes that a common unobserved factor, patient frailty, potentially influences
both live discharges and discharges following death. Although this assumption
appears plausible for hip fracture patients, other applications may require a
more general model that allows for separate unobserved confounders for
each competing risk. The more general model is particularly appropriate if
the unobserved confounders are not correlated across risks. Discrete hetero-
geneity distributions associated with each competing risk would then need to
be estimated.

The IV approach works most effectively when a great deal of variability
exists in the instrument, which in turn generates a wider range of values for
the explanatory variable of interest. In this case wait time by day of the week
of admission varied relatively less for California, because all patients tended
to be treated quickly. Thus, although the results remain statistically significant
for California, validation with a second IV would be more convincing.

Healthcare providers, researchers, and policymakers are becoming in-
creasingly interested in identifying the determinants of high-quality health-
care, but cost and time constraints often limit their analyses to administrative
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data. The methodologies outlined in this article demonstrate how such data
can be analyzed while accounting for their inherent limitations. Further
advances in statistical methodology will contribute to an understanding of
healthcare outcomes that is both more informative and cost-effective.

APPENDIX

This appendix describes the construction of the likelihood function used
to estimate the competing risks model. Denote the duration of a hospital
stay by t and suppose that there exist 2 mutually exclusive and exhaustive
destinations indexed by r = a (discharged alive from hospital), d (died in
hospital). Let Sr = 1 if the patient is discharged to destination r, and zero
otherwise. The transition intensity, Xr (t), is defined as the probability that the
patient is discharged to destination r after t days in hospital, conditional on
survival in the hospital for at least t days. Suppose the transition intensities
for patient i depend on a vector of characteristics, Xi. The probability of
observing an exit to r after a hospital stay of length t is then

fr (tilXi) = x,r (tiIXi) J| exp (- j Xj (ulXi)du), r = a, d. (1)

The first term on the right-hand side of Equation 1 is the transition
intensity representing the probability that the patient is discharged after t
days in the hospital to destination r given that his or her length of stay is
greater than or equal to t. The second term, the survivor function, is the
probability that the individual survives at least to time t in the hospital and
hence does not exit either alive or dead prior to t.

Unobserved characteristics, such as patient frailty, are likely to affect
both the live discharge and in-hospital mortality transition intensities. Sup-
pose that the transition intensities depend on a univariate random variable v in
addition to observed characteristics. Let G(v) be the distribution function of v.
Following Heckman and Singer, we assume that G(v) is a discrete distribution
with two points of support. One interpretation of this specification is that
there are two types of patients in the population. The location of the points of
support and their associated probability mass are estimated jointly with the
other parameters of the model. With this specification of G(v), the likelihood
function may be written as

2
L = 17 WZ(kfa (tiIXi, Vk)'ia fd (tiIXi, Vk)8id d (2)

i k=1

where vk, k = 1, 2 are the points of support with associated probabilities CWk,
which sum to one. The first term ofEquation 2 is the probability ofobserving a
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stay of ti days that results in a live discharge, while the second term is the prob-
ability of observing a stay of ti days ending in an in-hospital death. We experi-
mented with more than two points ofsupport, but this did not affect the results.

The final step in the construction of the empirical model involves the
specification of the functional form of the transition intensities in Equation
2. We follow a common approach and adopt a proportional hazards specifi-
cation. In addition, the unmeasured component is allowed to have different
factor loadings in each transition intensity function, so that

Xr (ti IXi, v) = exp (Xii8r + J7rP) XOr (ti), r = a, d, (3)

where XOr(t) represents the baseline transition intensity function. The factor
loadings JTr allow the unobserved factors to influence the death discharge and
live discharge transition intensities in different ways. For example, if v affected
live discharge but not mortality, then rd = 0. Because we cannot separately
identify all of the v, 7rr, and intercept terms in ir, we normalize rFa = 1.
Alternative normalizations were considered, but these did not alter the results.

A specification of the baseline transition intensity that yields a reason-
able fit of the data is the log-logistic distribution:

XOr(t)= lr+ at r >O, Pr > ° (4)

When ar > 1, XOr(t) has an inverted U shape reaching a maximum at
m = [(ar - l)/PrIl/ r

The points of support, their associated probabilities, and the coefficients
of the log-logistic distribution were all precisely estimated (t-statistics > 3.00).

Table A: Proportional Hazard Unobserved Heterogeneity Parameter
Estimates

Variable Estimate t-Statistic

VI -0.080 (- 1.420)
V2 1.279 (30.632)
CL) 0.113 (14.771)

NOTES

1. The AHA defines community hospitals as "all nonfederal, short-term general and
other specialty hospitals, excluding hospital units of institutions." The documen-
tation states that the sample for California and Massachusetts was drawn from all
general acute care hospitals.

2. The NIS sample is stratified by geographic region, ownership, location, teaching
status, and bed size. Thus, the resulting samples do not lead to sample sizes in
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California and Massachusetts that are proportionate to their respective popula-
tions. Specifically, up to 20 percent of the total number of U.S. hospitals within
each stratum are randomly selected for inclusion in the NIS. Most of the previous
years' hospitals are also reselected for up to three years. Because the northeast
tends to have fewer hospitals than the west, the NIS includes a higher proportion
of all Massachusetts hospitals than California hospitals. For instance, in 1992 the
NIS provides inpatient data for 42 percent of Massachusetts hospitals, but only
26 percent of California hospitals.

3. The average annual volume of hip fracture surgeries per hospital was 77.4 for
Manitoba patients, 59.6 in Quebec, 101.9 in Massachusetts, and 96.2 in California.

4. Manitoba patients with a prior length of stay greater than one day in a transferring
hospital were excluded for the same reason. There were only 95 such patients, and
they were older and had more comorbidities than the general Manitoba sample.
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